1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27
| import pandas as pd import numpy as np import matplotlib.pyplot as plt
from sklearn.model_selection import KFold from sklearn.model_selection import train_test_split
dataset = pd.read_csv('~/Documents/100-Days-Of-ML-Code/datasets/studentscores.csv') X = dataset.iloc[ : , : 1 ].values Y = dataset.iloc[ : , 1 ].values
X_train, X_test, Y_train, Y_test = train_test_split( X, Y, test_size = 1/4, random_state = 0)
from sklearn.linear_model import LinearRegression regressor = LinearRegression() regressor = regressor.fit(X_train, Y_train)
Y_pred = regressor.predict(X_test)
plt.scatter(X_train , Y_train, color = 'red') plt.plot(X_train , regressor.predict(X_train), color ='blue') plt.show()
plt.scatter(X_test , Y_test, color = 'red') plt.plot(X_test , regressor.predict(X_test), color ='blue') plt.show()
|