Catalogue
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27
| <dependency> <groupId>ml.dmlc</groupId> <artifactId>xgboost4j_2.12</artifactId> <version>1.0.0</version> <exclusions> <exclusion> <groupId>com.typesafe.akka</groupId> <artifactId>akka-actor_2.11</artifactId> </exclusion> <exclusion> <artifactId>scala-library</artifactId> <groupId>org.scala-lang</groupId> </exclusion> <exclusion> <artifactId>scala-compiler</artifactId> <groupId>org.scala-lang</groupId> </exclusion> <exclusion> <artifactId>asm</artifactId> <groupId>org.ow2.asm</groupId> </exclusion> <exclusion> <artifactId>objenesis</artifactId> <groupId>org.objenesis</groupId> </exclusion> </exclusions> </dependency>
|
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28
| private Booster model = null;
model = XGBoost.loadModel(rerankProperties.getModelPath());
private float[][] calScore(float[] featureValues, int size, int featureTotalDim) throws XGBoostError { DMatrix mat = new DMatrix(featureValues, size, featureTotalDim);
if (!rerankProperties.isRankOff() && model == null) { load(); }
return model.predict(mat); }
int samples = recalls.size(); float[] features = new float[samples * dimSize]; for (int i = 0; i < samples; i++) { String id = recalls.get(i).getId(); String uid = recalls.get(i).getAId(); Feature feature = features.get(jobId); CFeature cFeature = cFeatures.get(uid); float[] b = ModelFeature.transform(searchReq, queryFeature, aFeature, bFeature, cFeature, dimSize); System.arraycopy(b, 0, features, i * dimSize, b.length); } float[][] result = calScore(features, samples, dimSize);
|
模式流、模式、
Guardian Baize of Bot-flow Detection
FlowSentryZ 流量哨兵白泽(Baize)